Comparison of the electron capture dissociation fragmentation behavior of doubly and triply protonated peptides from trypsin, Glu-C, and chymotrypsin digestion.

نویسندگان

  • Anastasia Kalli
  • Kristina Håkansson
چکیده

In bottom-up proteomics, proteolytically derived peptides from proteins of interest are analyzed to provide sequence information for protein identification and characterization. Electron capture dissociation (ECD), which provides more random cleavages compared to "slow heating" techniques such as collisional activation, can result in greater sequence coverage for peptides and proteins. Most bottom-up proteomics approaches rely on tryptic doubly protonated peptides for generating sequence information. However, the effectiveness, in terms of peptide sequence coverage, of tryptic doubly protonated peptides in ECD remains to be characterized. Herein, we examine the ECD fragmentation behavior of 64 doubly- and 64 triply protonated peptides (i.e., a total of 128 peptide ions) from trypsin, Glu-C, and chymotrypsin digestion in a Fourier transform ion cyclotron resonance mass spectrometer. Our findings indicate that when triply protonated peptides are fragmented in ECD, independent of which proteolytic enzyme was used for protein digestion, more c- and z-type product ions are observed, and the number of complementary fragment pairs increases dramatically (44%). In addition, triply protonated peptides provide an increase (26%) in peptide sequence coverage. ECD of tryptic peptides, in both charge states, resulted in higher sequence coverage compared to chymotryptic and Glu-C digest peptides. The peptide sequence coverage we obtained in ECD of tryptic doubly protonated peptides (64%) is very similar to that reported for electron transfer dissociation of the same peptide type (63%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electron capture dissociation of highly charged proteolytic peptides from Lys N, Lys C and Glu C digestion.

Electron capture dissociation (ECD), which provides more extensive sequence coverage compared to "slow heating" tandem mass spectrometric techniques such as collision-activated dissociation, constitutes a promising method for de novo sequencing of peptides and proteins. We have previously examined and characterized the ECD fragmentation behavior of small to medium size doubly and triply protona...

متن کامل

Electron capture dissociation of tyrosine O-sulfated peptides complexed with divalent metal cations.

We compare electron capture dissociation (ECD) of doubly protonated and divalent metal-adducted tyrosine O-sulfated peptides without basic amino acid residues. ECD of doubly protonated Tyr2-sulfated cholecystokinin (CCKS) and doubly protonated Tyr12-sulfated gastrin II (GST) resulted in complete loss of SO3 from all product ions. Thus, contrary to typical ECD behavior, localization of the sulfa...

متن کامل

Surface-induced dissociation of multiply protonated peptides.

We report here surface-induced dissociation spectra of three multiply charged peptides: doubly protonated angiotensin I, doubly protonated renin substrate, and triply protonated melittin. For comparison, the collision-activated dissociation spectra of renin substrate and melittin are also presented. The spectra show that surface-induced dissociation provides structural information on multiply c...

متن کامل

The influence of histidine on cleavage C-terminal to acidic residues in doubly protonated tryptic peptides

An ion-trap CID MS/MS spectral database of 505 doubly protonated tryptic peptides was used to investigate the influence of an internal basic residue on preferential fragmentation C-terminal to the acidic amino acid residues, aspartic acid (Asp) and glutamic acid (Glu). Because tryptic peptides, which contain C-terminal Lys or Arg, were selected for analysis, the majority of the peptides contain...

متن کامل

Electron capture and collisionally activated dissociation mass spectrometry of doubly charged hyperbranched polyesteramides.

Electron capture dissociation (ECD) of doubly protonated hyperbranched polyesteramide oligomers (1100-1900 Da) was examined and compared with the structural information obtained by low energy collisionally activated dissociation (CAD). Both the ester and amide bonds of the protonated species were cleaved easily upon ECD with the formation of odd electron (OE(.+)) or even electron (EE(+)) fragme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteome research

دوره 7 7  شماره 

صفحات  -

تاریخ انتشار 2008